Local control of electric current driven shell etching of multiwalled carbon nanotubes

نویسندگان

  • j. tharian
  • u. sennhauser
  • d. poulikakos
  • b. j. nelson
چکیده

We report on a novel method for local control of shell engineering in multiwalled carbon nanotubes (MWNTs) using Joule-heating induced electric breakdown. By modulating the heat dissipation along a nanotube, we can confine its thinning and shell breakdown to occur within localized regions of peak temperatures, which are distributed over one-half of the NT length. The modulation is achieved by using suitably designed nanomachined heat sinks with different degrees of thermal coupling at different parts of a current-carrying nanotube. The location of electric breakdown occurs precisely at the regions of high temperatures predicted by the classical finite-element model of Joule heating in the MWNT. The experiments herein provide new insight into the electric breakdown mechanism and prove unambiguously that shell removal occurs due to thermal stress, underpinning the diffusive nature of MWNTs. The method demonstrated here has the potential to be a powerful tool in realizing MWNT bearings with complex architectures for use in integrated nanoelectromechanical systems (NEMS). In addition, the breakdown current and power in the nanotubes are significantly higher than those observed in nanotubes without heat removal via additional heat sinks. This indicates future avenues for enhancing the performance of MWNTs in electrical interconnect and nanoelectronic applications. PACS 73.63.Fg; 65.80.+n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shell buckling of individual multiwalled carbon nanotubes using nanoindentation

Although the mechanical behavior of carbon nanotubes has been studied extensively in recent years, very few experimental results exist on the shell buckling of nanotubes, despite its fundamental importance in nanotube mechanics and applications. Here we report an experimental technique in which individual multiwalled carbon nanotubes were axially compressed using a nanoindenter and the critical...

متن کامل

Comment on "geometrical dependence of high-bias current in multiwalled carbon nanotubes".

We have studied the high-bias transport properties of the different shells that constitute a multiwalled carbon nanotube. The current is shown to be reduced as the shell diameter is decreased or the length is increased. We assign this geometrical dependence to the competition between the electron-phonon scattering process and Zener tunneling.

متن کامل

Electrophoretic Synthesis of Titanium Oxide Nanotubes

In the current research project, sol-gel electrophoresis technique was utilized to grow titanium dioxide (TiO2) nanotubes. A titanium sol was prepared using organometallic precursors of titanium to fill the template channels. The prepared solwas driven into nanopores of porous anodic aluminum oxide templates under the influence of a DC electric field to form nanotubes on the pore walls. Tube fo...

متن کامل

Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the e...

متن کامل

Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/μm at an emission current of 1 μA, high emission current of 0.2 mA at an applied voltage of 700 V, and longtime emission stability for over 20 h without any significant current ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007